On Subordinated Distributions and Generalized Renewal Measures
Grubel, Rudolf
Ann. Probab., Tome 15 (1987) no. 4, p. 394-415 / Harvested from Project Euclid
Let $(X_k)_{k\in\mathbb{N}}$ be a sequence of i.i.d. random variables with partial sums $S_0 = 0, S_n = \sum^n_{k=1} X_k$. We investigate the behaviour of $\sum^\infty_{n=0} a_nP(S_n \in x + A)$ as $x \rightarrow \pm \infty$, where $(a_n)_{n\in\mathbb{N}_0}$ is a sequence of nonnegative numbers and $A \subset \mathbb{R}$ is a fixed Borel set.
Publié le : 1987-01-14
Classification:  Subordinated distributions,  renewal measures,  asymptotic expansions,  tail behaviour,  60E05,  60K05
@article{1176992278,
     author = {Grubel, Rudolf},
     title = {On Subordinated Distributions and Generalized Renewal Measures},
     journal = {Ann. Probab.},
     volume = {15},
     number = {4},
     year = {1987},
     pages = { 394-415},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176992278}
}
Grubel, Rudolf. On Subordinated Distributions and Generalized Renewal Measures. Ann. Probab., Tome 15 (1987) no. 4, pp.  394-415. http://gdmltest.u-ga.fr/item/1176992278/