On the Asymptotic Behaviour of Discrete Time Stochastic Growth Processes
Keller, G. ; Kersting, G. ; Rosler, U.
Ann. Probab., Tome 15 (1987) no. 4, p. 305-343 / Harvested from Project Euclid
We study the asymptotic behaviour of the solution of the stochastic difference equation $X_{n+1} = X_n + g(X_n)(1 + \xi_{n+1})$, where $g$ is a positive function, $(\xi_n)$ is a 0-mean, square-integrable martingale difference sequence, and the states $X_n < 0$ are assumed to be absorbing. We clarify, under which conditions $X_n$ diverges with positive probability, satisfies a law of large numbers, and, properly normalized, converges in distribution. Controlled Galton-Watson processes furnish examples for the processes under consideration.
Publié le : 1987-01-14
Classification:  Discrete time stochastic growth,  subexponential growth,  asymptotic behaviour,  central limit theorem,  controlled branching processes,  martingales,  60J80,  60G42
@article{1176992272,
     author = {Keller, G. and Kersting, G. and Rosler, U.},
     title = {On the Asymptotic Behaviour of Discrete Time Stochastic Growth Processes},
     journal = {Ann. Probab.},
     volume = {15},
     number = {4},
     year = {1987},
     pages = { 305-343},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176992272}
}
Keller, G.; Kersting, G.; Rosler, U. On the Asymptotic Behaviour of Discrete Time Stochastic Growth Processes. Ann. Probab., Tome 15 (1987) no. 4, pp.  305-343. http://gdmltest.u-ga.fr/item/1176992272/