Extreme Values for Stationary and Markov Sequences
O'Brien, George L.
Ann. Probab., Tome 15 (1987) no. 4, p. 281-291 / Harvested from Project Euclid
Let $(X_n)_{n=1,2,\ldots}$ be a strictly stationary sequence of real-valued random variables. Let $M_{i,j} = \max(X_{i+1},\ldots, X_j)$ and let $M_n = M_{0,n}$. Let $(c_n)$ be a sequence of real numbers. It is shown under general circumstances that $P\lbrack M_n \leq c_n\rbrack - (P\lbrack X_1 \leq c_n\rbrack)^{nP\lbrack M_{1,p_n}\leq c_n\mid X_1>c_n\rbrack} \rightarrow 0$, for any sequence $(p_n)$ satisfying certain growth-rate conditions. Under suitable mixing conditions, there exists a distribution function $G$ such that $P\lbrack M_n \leq c_n\rbrack - (G(c_n))^n \rightarrow 0$ for all sequences $(c_n)$. These theorems hold in particular if $(X_n)$ is a function of a positive Harris Markov sequence. Some examples are included.
Publié le : 1987-01-14
Classification:  Extreme value,  stationary sequence,  maximum,  minimum,  weak limit,  mixing,  extremal index,  phantom distribution function,  function of a Markov sequence,  60F05,  60G10,  60J05
@article{1176992270,
     author = {O'Brien, George L.},
     title = {Extreme Values for Stationary and Markov Sequences},
     journal = {Ann. Probab.},
     volume = {15},
     number = {4},
     year = {1987},
     pages = { 281-291},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176992270}
}
O'Brien, George L. Extreme Values for Stationary and Markov Sequences. Ann. Probab., Tome 15 (1987) no. 4, pp.  281-291. http://gdmltest.u-ga.fr/item/1176992270/