On the Existence of the Ergodic Hilbert Transform
Jajte, R.
Ann. Probab., Tome 15 (1987) no. 4, p. 831-835 / Harvested from Project Euclid
Let $u$ be a unitary operator acting in $\mathbb{L}_2(\Omega, F, p)$, where $p$ is a probability measure. We prove that the limit $\lim_{n\rightarrow\infty}\sum_{0 < |k| \leq n} u^k f/k$ exists almost surely, for every $f \in \mathbb{L}_2(\Omega, F, p)$ if and only if the limit $\lim_{n\rightarrow\infty} n^{-1}\sum^{n-1}_{k=0}u^kf$ exists almost surely, for every $f \in \mathbb{L}_2(\Omega, F, p)$.
Publié le : 1987-04-14
Classification:  Ergodic Hilbert transform,  individual ergodic theorem,  spectral representation,  almost sure convergence,  47A35,  40A05
@article{1176992176,
     author = {Jajte, R.},
     title = {On the Existence of the Ergodic Hilbert Transform},
     journal = {Ann. Probab.},
     volume = {15},
     number = {4},
     year = {1987},
     pages = { 831-835},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176992176}
}
Jajte, R. On the Existence of the Ergodic Hilbert Transform. Ann. Probab., Tome 15 (1987) no. 4, pp.  831-835. http://gdmltest.u-ga.fr/item/1176992176/