A Second-Order Asymptotic Distributional Representation of $M$-Estimators with Discontinuous Score Functions
Jureckova, Jana ; Sen, Pranab Kumar
Ann. Probab., Tome 15 (1987) no. 4, p. 814-823 / Harvested from Project Euclid
For a nondecreasing score function having finitely many jump discontinuities, a representation of $M$-estimators with the second-order asymptotic distribution is established, and the result is also extended to one-step versions of $M$-estimators.
Publié le : 1987-04-14
Classification:  Jump discontinuity,  $M$-estimator,  one-step version of $M$-estimator,  random change of time,  weak convergence of $M$-processes,  60F17,  62E20,  62F35,  62G05
@article{1176992174,
     author = {Jureckova, Jana and Sen, Pranab Kumar},
     title = {A Second-Order Asymptotic Distributional Representation of $M$-Estimators with Discontinuous Score Functions},
     journal = {Ann. Probab.},
     volume = {15},
     number = {4},
     year = {1987},
     pages = { 814-823},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176992174}
}
Jureckova, Jana; Sen, Pranab Kumar. A Second-Order Asymptotic Distributional Representation of $M$-Estimators with Discontinuous Score Functions. Ann. Probab., Tome 15 (1987) no. 4, pp.  814-823. http://gdmltest.u-ga.fr/item/1176992174/