Markov Additive Processes II. Large Deviations
Ney, P. ; Nummelin, E.
Ann. Probab., Tome 15 (1987) no. 4, p. 593-609 / Harvested from Project Euclid
Let $\{(X_n, S_n); n = 0,1,\ldots\}$ be a Markov additive process, $\{X_n\}$ taking values in a general state space $\mathbb{E}$, while $\{S_n\} \subset \mathbb{R}^d$. The large deviation principle is shown to hold for $P_x\{(X_n, S_n) \in A \times n\Gamma\}, A \subset \mathbb{E}, \Gamma \subset \mathbb{R}^d$, the upper bound holding for closed sets $\Gamma$, the lower bound for open sets. The only hypothesis for the lower bound is irreducibility of $\{X_n\}$, and nonsingularity of $\{S_n\}$. The rate function is characterized in terms of the transform kernel of $P_x$.
Publié le : 1987-04-14
Classification:  Large deviations,  Markov chain,  Markov additive process,  60F10,  60K15,  60J05
@article{1176992160,
     author = {Ney, P. and Nummelin, E.},
     title = {Markov Additive Processes II. Large Deviations},
     journal = {Ann. Probab.},
     volume = {15},
     number = {4},
     year = {1987},
     pages = { 593-609},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176992160}
}
Ney, P.; Nummelin, E. Markov Additive Processes II. Large Deviations. Ann. Probab., Tome 15 (1987) no. 4, pp.  593-609. http://gdmltest.u-ga.fr/item/1176992160/