Decomposition of Binary Random Fields and Zeros of Partition Functions
Newman, Charles M.
Ann. Probab., Tome 15 (1987) no. 4, p. 1126-1130 / Harvested from Project Euclid
Let $\delta_c(X)$ denote the maximum $d$ in $\lbrack 0, \frac{1}{2}\rbrack$ such that a binary Gibbs random field $X$ can be decomposed as the modulo 2 sum of two independent binary fields, one of which is independent Bernoulli (white binary noise) of weight $d$. In a recent paper, Hajek and Berger showed, under modest assumptions, that $\delta_c > 0$. We point out here that the decomposition of $X$ is related to the classic statistical mechanics problem of determining zero-free regions of partition functions. A theorem of Ruelle is then applied to obtain improved estimates for $\delta_c$.
Publié le : 1987-07-14
Classification:  Decomposition,  random fields,  Gibbs distributions,  partition functions,  zeros,  distortion theory,  60G60,  94A34,  60B15,  82A05
@article{1176992085,
     author = {Newman, Charles M.},
     title = {Decomposition of Binary Random Fields and Zeros of Partition Functions},
     journal = {Ann. Probab.},
     volume = {15},
     number = {4},
     year = {1987},
     pages = { 1126-1130},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176992085}
}
Newman, Charles M. Decomposition of Binary Random Fields and Zeros of Partition Functions. Ann. Probab., Tome 15 (1987) no. 4, pp.  1126-1130. http://gdmltest.u-ga.fr/item/1176992085/