Probability Estimates for Multiparameter Brownian Processes
Bass, Richard F.
Ann. Probab., Tome 16 (1988) no. 4, p. 251-264 / Harvested from Project Euclid
Let $F$ be a distribution function on $\lbrack 0, 1\rbrack^d$, and let $W_F$ be the Gaussian process that is the weak limit of the empirical process determined by $F$. If $G$ is a function on $\lbrack 0, 1\rbrack^d$, upper and lower bounds are found for $P(\sup_{t \in \lbrack 0, 1\rbrack^d}|W_F(t) - G(t)| \leq \varepsilon)$.
Publié le : 1988-01-14
Classification:  Brownian sheet,  Kolmogorov-Smirnov,  large deviations,  Haar functions,  empirical processes,  60G15,  60F10,  60G60,  62G10
@article{1176991899,
     author = {Bass, Richard F.},
     title = {Probability Estimates for Multiparameter Brownian Processes},
     journal = {Ann. Probab.},
     volume = {16},
     number = {4},
     year = {1988},
     pages = { 251-264},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176991899}
}
Bass, Richard F. Probability Estimates for Multiparameter Brownian Processes. Ann. Probab., Tome 16 (1988) no. 4, pp.  251-264. http://gdmltest.u-ga.fr/item/1176991899/