Gaussian Processes and Almost Spherical Sections of Convex Bodies
Gordon, Yehoram
Ann. Probab., Tome 16 (1988) no. 4, p. 180-188 / Harvested from Project Euclid
We present a simple proof with sharp estimates of Dvoretzky's theorem on the existence of almost spherical sections having large dimension in arbitrary convex bodies in $R^N$.
Publié le : 1988-01-14
Classification:  Gaussian processes,  convex bodies,  normed spaces,  random linear maps,  60G15,  46B20,  60B11,  60D05
@article{1176991893,
     author = {Gordon, Yehoram},
     title = {Gaussian Processes and Almost Spherical Sections of Convex Bodies},
     journal = {Ann. Probab.},
     volume = {16},
     number = {4},
     year = {1988},
     pages = { 180-188},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176991893}
}
Gordon, Yehoram. Gaussian Processes and Almost Spherical Sections of Convex Bodies. Ann. Probab., Tome 16 (1988) no. 4, pp.  180-188. http://gdmltest.u-ga.fr/item/1176991893/