The Cube of a Normal Distribution is Indeterminate
Berg, Christian
Ann. Probab., Tome 16 (1988) no. 4, p. 910-913 / Harvested from Project Euclid
It is established that if $X$ is a stochastic variable with a normal distribution, then $X^{2n+1}$ has an indeterminate distribution for $n \geq 1$. Furthermore, the distribution of $|X|^\alpha$ is determinate for $0 < \alpha \leq 4$ while indeterminate for $\alpha > 4$.
Publié le : 1988-04-14
Classification:  Determinate and indeterminate distributions,  normal distribution,  powers of a normal distribution,  60E05,  44A60
@article{1176991795,
     author = {Berg, Christian},
     title = {The Cube of a Normal Distribution is Indeterminate},
     journal = {Ann. Probab.},
     volume = {16},
     number = {4},
     year = {1988},
     pages = { 910-913},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176991795}
}
Berg, Christian. The Cube of a Normal Distribution is Indeterminate. Ann. Probab., Tome 16 (1988) no. 4, pp.  910-913. http://gdmltest.u-ga.fr/item/1176991795/