Convergence to the Semicircle Law
Bai, Z. D. ; Yin, Y. Q.
Ann. Probab., Tome 16 (1988) no. 4, p. 863-875 / Harvested from Project Euclid
This article proves that the spectral distribution of the random matrix $(1/2\sqrt{np}) (X_pX'_p)$, where $X_p = \lbrack X_{ij}\rbrack_{p\times n}$ and $\lbrack X_{ij}: i, j = 1,2,\ldots\rbrack$ has iid entries with $EX^4_{11} < \infty, \operatorname{Var}(X_{11}) = 1$, tends to the semicircle law as $p \rightarrow \infty, p/n \rightarrow 0$, a.s.
Publié le : 1988-04-14
Classification:  Random matrix,  spectral distribution,  semicircle law,  60F99,  62E20
@article{1176991792,
     author = {Bai, Z. D. and Yin, Y. Q.},
     title = {Convergence to the Semicircle Law},
     journal = {Ann. Probab.},
     volume = {16},
     number = {4},
     year = {1988},
     pages = { 863-875},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176991792}
}
Bai, Z. D.; Yin, Y. Q. Convergence to the Semicircle Law. Ann. Probab., Tome 16 (1988) no. 4, pp.  863-875. http://gdmltest.u-ga.fr/item/1176991792/