If $\{Z_n\}^\infty_0$ is a critical branching process such that $E_1Z^2_1 < \infty$, then $(\log n)^{-1}E_iM_n \rightarrow i$, where $E_i$ refers to starting with $Z_0 = i$ and $M_n = \max_{0\leq j \leq n}Z_j$. This improves the earlier results of Weiner [9] and Pakes [7].
@article{1176991770,
author = {Athreya, K. B.},
title = {On the Maximum Sequence in a Critical Branching Process},
journal = {Ann. Probab.},
volume = {16},
number = {4},
year = {1988},
pages = { 502-507},
language = {en},
url = {http://dml.mathdoc.fr/item/1176991770}
}
Athreya, K. B. On the Maximum Sequence in a Critical Branching Process. Ann. Probab., Tome 16 (1988) no. 4, pp. 502-507. http://gdmltest.u-ga.fr/item/1176991770/