Moment Bounds for Associated Sequences
Birkel, Thomas
Ann. Probab., Tome 16 (1988) no. 4, p. 1184-1193 / Harvested from Project Euclid
Let $\{X_j: j \in \mathbb{N}\}$ be a sequence of associated random variables with zero mean and let $r > 2$. We give two conditions--on the moments and on the covariance structure of the process--which guarantee that $\sup_{m \in \mathbb{N} \cup \{0\}} E| \sum^{m+n}_{j=m+1} X_j|^r = O(n^{r/2})$ holds. Examples show that neither condition can be weakened.
Publié le : 1988-07-14
Classification:  Moment bounds,  partial sums of associated random variables,  60E15,  62H20
@article{1176991684,
     author = {Birkel, Thomas},
     title = {Moment Bounds for Associated Sequences},
     journal = {Ann. Probab.},
     volume = {16},
     number = {4},
     year = {1988},
     pages = { 1184-1193},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176991684}
}
Birkel, Thomas. Moment Bounds for Associated Sequences. Ann. Probab., Tome 16 (1988) no. 4, pp.  1184-1193. http://gdmltest.u-ga.fr/item/1176991684/