On the Upper Bound for Large Deviations of Sums of I.I.D. Random Vectors
Slaby, M.
Ann. Probab., Tome 16 (1988) no. 4, p. 978-990 / Harvested from Project Euclid
Let $X_1, X_2, \cdots$ be a sequence of i.i.d. random vectors with values in $\mathbb{R}^d, \mu = \mathscr{L}(X_1)$ and let $\lambda$ be the convex conjugate of $\log \hat{\mu}$, where $\hat{\mu}$ is the Laplace transform of $\mu$. For every $d \geq 2$, a probability measure $\mu$ and an open set $A$ in $\mathbb{R}^d$ are constructed so that $\lim \inf_{n\rightarrow\infty} \frac{1}{n} \log P\big(\frac{S_n}{n} \in A\big) > - \Lambda (A),$ where $S_n = X_1 + \cdots + X_n$ and $\Lambda (A) = \inf_{x \in A} \Lambda (x)$. It is also shown that if $\mu$ satisfies certain regularity conditions, then $\lim \sup_{n\rightarrow \infty} \frac{1}{n} \log P\big(\frac{S_n}{n} \in A\big) \leq - \Lambda (A),$ holds for all Borel sets in $\mathbb{R}^d$.
Publié le : 1988-07-14
Classification:  Sums of i.i.d. random vectors,  large deviations,  upper bound for open sets,  60F10
@article{1176991672,
     author = {Slaby, M.},
     title = {On the Upper Bound for Large Deviations of Sums of I.I.D. Random Vectors},
     journal = {Ann. Probab.},
     volume = {16},
     number = {4},
     year = {1988},
     pages = { 978-990},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176991672}
}
Slaby, M. On the Upper Bound for Large Deviations of Sums of I.I.D. Random Vectors. Ann. Probab., Tome 16 (1988) no. 4, pp.  978-990. http://gdmltest.u-ga.fr/item/1176991672/