Some Limit Theorems for Voter Model Occupation Times
Cox, J. T.
Ann. Probab., Tome 16 (1988) no. 4, p. 1559-1569 / Harvested from Project Euclid
Let $\eta_t$ be the (basic) voter model on $\mathbb{Z}^d$. We consider the occupation time functionals $\int^t_0 f(\eta_s)ds$ for certain functions $f$ and initial distributions. The first result is a pointwise ergodic theorem in the case $d = 2$, extending the work of Andjel and Kipnis. The second result is a central limit type theorem for $f(\eta) = \eta(0)$ and initial distributions: (i) $\delta_\eta$, for a class of states $\eta, d \geq 2$, and (ii) $\nu_\theta$, the extremal invariant measures, $d \geq 3$.
Publié le : 1988-10-14
Classification:  Voter model,  coalescing random walks,  pointwise ergodic theorems,  occupation times,  pointwise ergodic theorem,  60K35
@article{1176991583,
     author = {Cox, J. T.},
     title = {Some Limit Theorems for Voter Model Occupation Times},
     journal = {Ann. Probab.},
     volume = {16},
     number = {4},
     year = {1988},
     pages = { 1559-1569},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176991583}
}
Cox, J. T. Some Limit Theorems for Voter Model Occupation Times. Ann. Probab., Tome 16 (1988) no. 4, pp.  1559-1569. http://gdmltest.u-ga.fr/item/1176991583/