For a certain class of Markov processes, the $\lambda$-capacitary measure $\pi^\lambda_S$ of a semipolar set $S$ has the following property under a mild condition: A subset $B$ of $S$ is polar if and only if $\pi^\lambda_S(B) = 0$.
Publié le : 1989-01-14
Classification:
Standard process,
semipolar set,
polar set,
$\lambda$-capacitary measure,
$\lambda$-capacity,
60J45,
60J40
@article{1176991517,
author = {Kanda, Mamoru},
title = {A Note on Capacitary Measures of Semipolar Sets},
journal = {Ann. Probab.},
volume = {17},
number = {4},
year = {1989},
pages = { 379-384},
language = {en},
url = {http://dml.mathdoc.fr/item/1176991517}
}
Kanda, Mamoru. A Note on Capacitary Measures of Semipolar Sets. Ann. Probab., Tome 17 (1989) no. 4, pp. 379-384. http://gdmltest.u-ga.fr/item/1176991517/