Weak Convergence of Smoothed and Nonsmoothed Bootstrap Quantile Estimates
Falk, M. ; Reiss, R.-D.
Ann. Probab., Tome 17 (1989) no. 4, p. 362-371 / Harvested from Project Euclid
Under fairly general assumptions on the underlying distribution function, the bootstrap process, pertaining to the sample $q$-quantile, converges weakly in $D_\mathbb{R}$ to the standard Brownian motion. Furthermore, weak convergence of a smoothed bootstrap quantile estimate is proved which entails that in this particular case the smoothed bootstrap estimate outperforms the nonsmoothed one.
Publié le : 1989-01-14
Classification:  Sample quantile,  empirical distribution function,  bootstrap process,  Brownian motion,  kernel estimate,  62G30,  60F05,  60G99
@article{1176991515,
     author = {Falk, M. and Reiss, R.-D.},
     title = {Weak Convergence of Smoothed and Nonsmoothed Bootstrap Quantile Estimates},
     journal = {Ann. Probab.},
     volume = {17},
     number = {4},
     year = {1989},
     pages = { 362-371},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176991515}
}
Falk, M.; Reiss, R.-D. Weak Convergence of Smoothed and Nonsmoothed Bootstrap Quantile Estimates. Ann. Probab., Tome 17 (1989) no. 4, pp.  362-371. http://gdmltest.u-ga.fr/item/1176991515/