We consider the set of mappings of the integers $\{1, 2, \ldots, n\}$ into $\{1, 2, \ldots, n\}$ and put a uniform probability measure on this set. Any such mapping can be represented as a directed graph on $n$ labelled vertices. We study the component structure of the associated graphs as $n \rightarrow \infty$. To each mapping we associate a step function on $\lbrack 0, 1 \rbrack$. Each jump in the function equals the number of connected components of a certain size in the graph which represents the map. We normalize these functions and show that the induced measures on $D\lbrack 0, 1 \rbrack$ converge to Wiener measure. This result complements another result by Aldous on random mappings.