Laws of the Iterated Logarithm for the Empirical Characteristic Function
Lacey, Michael T.
Ann. Probab., Tome 17 (1989) no. 4, p. 292-300 / Harvested from Project Euclid
Let $X$ be a real-valued random variable with distribution function $F(x)$ and characteristic function $c(t)$. Let $F_n(x)$ be the $n$th empirical distribution function associated with $X$ and let $c_n(t)$ be the characteristic function $F_n(x)$. Necessary and sufficient conditions in terms of $c(t)$ are obtained for $c_n(t) - c(t)$ to obey bounded and compact laws of the iterated logarithm in the Banach space of continuous complex-valued functions on $\lbrack -1, 1 \rbrack$.
Publié le : 1989-01-14
Classification:  Laws of the iterated logarithm,  empirical characteristic function,  stationary Gaussian processes,  metric entropy,  60B12,  60G50,  60G10
@article{1176991509,
     author = {Lacey, Michael T.},
     title = {Laws of the Iterated Logarithm for the Empirical Characteristic Function},
     journal = {Ann. Probab.},
     volume = {17},
     number = {4},
     year = {1989},
     pages = { 292-300},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176991509}
}
Lacey, Michael T. Laws of the Iterated Logarithm for the Empirical Characteristic Function. Ann. Probab., Tome 17 (1989) no. 4, pp.  292-300. http://gdmltest.u-ga.fr/item/1176991509/