The Scaling Limit of Self-Avoiding Random Walk in High Dimensions
Slade, Gordon
Ann. Probab., Tome 17 (1989) no. 4, p. 91-107 / Harvested from Project Euclid
The Brydges-Spencer lace expansion is used to prove that the scaling limit of the finite-dimensional distributions of self-avoiding random walk in the $d$-dimensional cubic lattice $\mathbb{Z}^d$ is Gaussian, if $d$ is sufficiently large. It is also shown that the critical exponent $\gamma$ for the number of self-avoiding walks is equal to 1, if $d$ is sufficiently large.
Publié le : 1989-01-14
Classification:  Self-avoiding random walk,  scaling limit,  lace expansion,  Brownian motion,  lattice models,  82A67,  60J15
@article{1176991496,
     author = {Slade, Gordon},
     title = {The Scaling Limit of Self-Avoiding Random Walk in High Dimensions},
     journal = {Ann. Probab.},
     volume = {17},
     number = {4},
     year = {1989},
     pages = { 91-107},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176991496}
}
Slade, Gordon. The Scaling Limit of Self-Avoiding Random Walk in High Dimensions. Ann. Probab., Tome 17 (1989) no. 4, pp.  91-107. http://gdmltest.u-ga.fr/item/1176991496/