Invariance Principle and Empirical Mean Large Deviations of the Critical Ornstein-Uhlenbeck Process
Deuschel, Jean-Dominique
Ann. Probab., Tome 17 (1989) no. 4, p. 74-90 / Harvested from Project Euclid
We consider a lattice system of linear interacting diffusion processes with infinitely many invariant distributions. We first prove a nonstandard central limit theorem and identify the equation of the fluctuation field. We then derive dimension dependent large deviation results for the empirical mean.
Publié le : 1989-01-14
Classification:  Infinite particle system,  Ornstein-Uhlenbeck process,  invariance principle,  large deviations,  60K35,  60F05,  60F10
@article{1176991495,
     author = {Deuschel, Jean-Dominique},
     title = {Invariance Principle and Empirical Mean Large Deviations of the Critical Ornstein-Uhlenbeck Process},
     journal = {Ann. Probab.},
     volume = {17},
     number = {4},
     year = {1989},
     pages = { 74-90},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176991495}
}
Deuschel, Jean-Dominique. Invariance Principle and Empirical Mean Large Deviations of the Critical Ornstein-Uhlenbeck Process. Ann. Probab., Tome 17 (1989) no. 4, pp.  74-90. http://gdmltest.u-ga.fr/item/1176991495/