On a Problem of Csorgo and Revesz
Shao, Qi-Man
Ann. Probab., Tome 17 (1989) no. 4, p. 809-812 / Harvested from Project Euclid
Suppose $\{X_n\}$ is an i.i.d. sequence of random variables with mean 0, variance 1 and $S_n = \sum^n_{i = 1}X_i$. Let $0 < r < 1$. It is well known that $S_n - W(n) = O((\log n)^{1/r}) \mathrm{a.s}.$ when $Ee^{t_0|X_1|^r} < \infty$ for some $t_0 > 0$, where $\{W(t), t \geq 0\}$ is the standard Wiener process. We prove that $O((\log n)^{1/r})$ cannot be replaced by $o((\log n)^{1/r})$.
Publié le : 1989-04-14
Classification:  Invariance principle,  increments of partial sums,  60F15
@article{1176991428,
     author = {Shao, Qi-Man},
     title = {On a Problem of Csorgo and Revesz},
     journal = {Ann. Probab.},
     volume = {17},
     number = {4},
     year = {1989},
     pages = { 809-812},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176991428}
}
Shao, Qi-Man. On a Problem of Csorgo and Revesz. Ann. Probab., Tome 17 (1989) no. 4, pp.  809-812. http://gdmltest.u-ga.fr/item/1176991428/