Processing math: 0%
Sums of Independent Random Variables in Rearrangement Invariant Function Spaces
Johnson, William B. ; Schechtman, G.
Ann. Probab., Tome 17 (1989) no. 4, p. 789-808 / Harvested from Project Euclid
Let X be a quasinormed rearrangement invariant function space on (0, 1) which contains L_q(0, 1) for some finite q. There is an extension of X to a quasinormed rearrangement invariant function space Y on (0, \infty) so that for any sequence (f_i)^\infty_{i = 1} of symmetric random variables on (0,1), the quasinorm of \sum f_i in X is equivalent to the quasinorm of \sum\mathbf{f}_i in Y, where (\mathbf{f}_i)^\infty_{i = 1} is a sequence of disjoint functions on (0, \infty) such that for each i, \mathbf{f}_i has the same decreasing rearrangement as f_i. When specialized to the case X = L_q(0, 1), this result gives new information on the quantitative local structure of L_q.
Publié le : 1989-04-14
Classification:  Independent random variables,  moment inequalities,  Rosenthal's inequality,  rearrangement invariant space,  uniform approximation property,  60G50,  46E30
@article{1176991427,
     author = {Johnson, William B. and Schechtman, G.},
     title = {Sums of Independent Random Variables in Rearrangement Invariant Function Spaces},
     journal = {Ann. Probab.},
     volume = {17},
     number = {4},
     year = {1989},
     pages = { 789-808},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176991427}
}
Johnson, William B.; Schechtman, G. Sums of Independent Random Variables in Rearrangement Invariant Function Spaces. Ann. Probab., Tome 17 (1989) no. 4, pp.  789-808. http://gdmltest.u-ga.fr/item/1176991427/