Multiple Points of Levy Processes
Gall, Jean-Francois Le ; Rosen, Jay S. ; Shieh, Narn-Rueih
Ann. Probab., Tome 17 (1989) no. 4, p. 503-515 / Harvested from Project Euclid
We prove a conjecture of Hendricks and Taylor that a Levy process in $\mathbb{R}^d$ with 1-potential kernel $u(x)$ will have $k$-multiple points if $\int_{|x| \leq 1} (u(x))^k dx < \infty$ and $u(0) > 0$.
Publié le : 1989-04-14
Classification:  Multiple points,  Levy processes,  60J30
@article{1176991412,
     author = {Gall, Jean-Francois Le and Rosen, Jay S. and Shieh, Narn-Rueih},
     title = {Multiple Points of Levy Processes},
     journal = {Ann. Probab.},
     volume = {17},
     number = {4},
     year = {1989},
     pages = { 503-515},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176991412}
}
Gall, Jean-Francois Le; Rosen, Jay S.; Shieh, Narn-Rueih. Multiple Points of Levy Processes. Ann. Probab., Tome 17 (1989) no. 4, pp.  503-515. http://gdmltest.u-ga.fr/item/1176991412/