Heat Semigroup on a Complete Riemannian Manifold
Hsu, Pei
Ann. Probab., Tome 17 (1989) no. 4, p. 1248-1254 / Harvested from Project Euclid
Let $M$ be a complete Riemannian manifold and $p(t, x, y)$ the minimal heat kernel on $M$. Let $P_t$ be the associated semigroup. We say that $M$ is stochastically complete if $\int_M p(t, x, y) dy = 1$ for all $t > 0, x \in M$; we say that $M$ has the $C_0$-diffusion property (or the Feller property) if $P_tf$ vanishes at infinity for all $t > 0$ whenever $f$ is so. Let $x_0 \in M$ and let $\kappa(r)^2 \geq -\inf\{Ric(x): \rho(x, x_0) \leq r\}$ ($\rho$ is the Riemannian distance). We prove that $M$ is stochastically complete and has the $C_0$-diffusion property if $\int^\infty_c \kappa(r)^{-1} dr = \infty$ by studying the radial part of the Riemannian Brownian motion on $M$.
Publié le : 1989-07-14
Classification:  Riemannian manifold,  comparison theorems,  Riemannian Brownian motion,  stochastic completeness,  Ricci curvature,  $C_0$-diffusion,  58J32
@article{1176991267,
     author = {Hsu, Pei},
     title = {Heat Semigroup on a Complete Riemannian Manifold},
     journal = {Ann. Probab.},
     volume = {17},
     number = {4},
     year = {1989},
     pages = { 1248-1254},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176991267}
}
Hsu, Pei. Heat Semigroup on a Complete Riemannian Manifold. Ann. Probab., Tome 17 (1989) no. 4, pp.  1248-1254. http://gdmltest.u-ga.fr/item/1176991267/