A process $(X_t)$ is equivalent to an Ornstein-Uhlenbeck process if and only if $e^{-\lambda t}f(X_t)$ is a martingale for every $f \geq 0$ on $\mathbb{R}^d$ such that $\Delta f(x) - \langle x, \nabla f(x)\rangle = \lambda f(x)$.
@article{1176991256,
author = {Taylor, J. C.},
title = {The Minimal Eigenfunctions Characterize the Ornstein-Uhlenbeck Process},
journal = {Ann. Probab.},
volume = {17},
number = {4},
year = {1989},
pages = { 1055-1062},
language = {en},
url = {http://dml.mathdoc.fr/item/1176991256}
}
Taylor, J. C. The Minimal Eigenfunctions Characterize the Ornstein-Uhlenbeck Process. Ann. Probab., Tome 17 (1989) no. 4, pp. 1055-1062. http://gdmltest.u-ga.fr/item/1176991256/