Isoperimetry and Integrability of the Sum of Independent Banach-Space Valued Random Variables
Talagrand, Michel
Ann. Probab., Tome 17 (1989) no. 4, p. 1546-1570 / Harvested from Project Euclid
We develop a new method to study the tails of a sum of independent mean zero Banach-space valued random variables $(X_i)_{i \leq N}.$ It relies on a new isoperimetric inequality for subsets of a product of probability spaces. In particular, we prove that for $p \geq 1,$ $\bigg\|\sum_{i \leq N} X_i\bigg\|_p \leq \frac{Kp}{1 + \log p}\bigg(\bigg\|\sum_{i \leq N} X_i\bigg\|_1 + \|\max_{i \leq N}\|X_i\|\|_p\bigg),$ where $K$ is a universal constant. Other optimal inequalities for exponential moments are obtained.
Publié le : 1989-10-14
Classification:  Isoperimetric inequality,  Hoffmann-Jorgensen inequality,  Poisson measure,  exponential inequalities,  60B11,  60E15,  60G50,  28A35
@article{1176991174,
     author = {Talagrand, Michel},
     title = {Isoperimetry and Integrability of the Sum of Independent Banach-Space Valued Random Variables},
     journal = {Ann. Probab.},
     volume = {17},
     number = {4},
     year = {1989},
     pages = { 1546-1570},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176991174}
}
Talagrand, Michel. Isoperimetry and Integrability of the Sum of Independent Banach-Space Valued Random Variables. Ann. Probab., Tome 17 (1989) no. 4, pp.  1546-1570. http://gdmltest.u-ga.fr/item/1176991174/