We define $\int^\bullet_0 X_s dY_s$ for $X$ a process locally of bounded $\beta$-variation and $Y$ locally of bounded $\alpha$-variation $(\alpha < 2 \leq \beta \text{and} 1/\alpha + 1/\beta > 1)$ as the limit of the Riemann sums. The properties of this integral lead us to an Ito formula and to the existence of local times for some kinds of Dirichlet processes.
@article{1176991171,
author = {Bertoin, Jean},
title = {Sur Une Integrale Pour Les Processus A $\alpha$-Variation Bornee},
journal = {Ann. Probab.},
volume = {17},
number = {4},
year = {1989},
pages = { 1521-1535},
language = {fr},
url = {http://dml.mathdoc.fr/item/1176991171}
}
Bertoin, Jean. Sur Une Integrale Pour Les Processus A $\alpha$-Variation Bornee. Ann. Probab., Tome 17 (1989) no. 4, pp. 1521-1535. http://gdmltest.u-ga.fr/item/1176991171/