An Asymptotic Evaluation of the Tail of a Multiple Symmetric $\alpha$- Stable Integral
Samorodnitsky, Gennady ; Szulga, Jerzy
Ann. Probab., Tome 17 (1989) no. 4, p. 1503-1520 / Harvested from Project Euclid
We expand a multiple symmetric $\alpha$-stable integral $\int \cdots \int f(t_1, \ldots, t_n) dM(t_1) \ldots dM(t_n)$ into a LePage type multiple series of transformed arrival times of a Poisson process. An exact evaluation of the limit of appropriately normalized tail distribution results from this representation.
Publié le : 1989-10-14
Classification:  Multiple stochastic integral,  stable Levy process,  Poisson process,  60G57,  60E07,  60H05
@article{1176991170,
     author = {Samorodnitsky, Gennady and Szulga, Jerzy},
     title = {An Asymptotic Evaluation of the Tail of a Multiple Symmetric $\alpha$- Stable Integral},
     journal = {Ann. Probab.},
     volume = {17},
     number = {4},
     year = {1989},
     pages = { 1503-1520},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176991170}
}
Samorodnitsky, Gennady; Szulga, Jerzy. An Asymptotic Evaluation of the Tail of a Multiple Symmetric $\alpha$- Stable Integral. Ann. Probab., Tome 17 (1989) no. 4, pp.  1503-1520. http://gdmltest.u-ga.fr/item/1176991170/