A Sufficient Condition for Two Markov Semigroups to Commute
Bequillard, A. L.
Ann. Probab., Tome 17 (1989) no. 4, p. 1478-1482 / Harvested from Project Euclid
Let $\{P^{(k)}_t, t \geq 0\}, k = 1, 2$, be two Markov semigroups on $\hat{C}(E)$, the space of continuous functions on a separable, locally compact metric space $E$ which tend to zero at infinity. In this article, we derive a sufficient condition for the two semigroups to commute, in the sense that for each $s \geq 0, t \geq 0$ and each $f \in \hat{C}(E), P^{(1)}_s P^{(2)}_t f = P^{(2)}_t P^{(1)}_s f$.
Publié le : 1989-10-14
Classification:  60J,  Markov process,  martingale problem,  semigroup
@article{1176991168,
     author = {Bequillard, A. L.},
     title = {A Sufficient Condition for Two Markov Semigroups to Commute},
     journal = {Ann. Probab.},
     volume = {17},
     number = {4},
     year = {1989},
     pages = { 1478-1482},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176991168}
}
Bequillard, A. L. A Sufficient Condition for Two Markov Semigroups to Commute. Ann. Probab., Tome 17 (1989) no. 4, pp.  1478-1482. http://gdmltest.u-ga.fr/item/1176991168/