We show that if $2N \leq d$, then with probability 1 the Brownian sheet $W: R^N_+ \rightarrow R^d$ satisfies $\forall$ Borel set $E, \dim W(E) = 2 \dim E$.
@article{1176991165,
author = {Mountford, T. S.},
title = {Uniform Dimension Results for the Brownian Sheet},
journal = {Ann. Probab.},
volume = {17},
number = {4},
year = {1989},
pages = { 1454-1462},
language = {en},
url = {http://dml.mathdoc.fr/item/1176991165}
}
Mountford, T. S. Uniform Dimension Results for the Brownian Sheet. Ann. Probab., Tome 17 (1989) no. 4, pp. 1454-1462. http://gdmltest.u-ga.fr/item/1176991165/