The Contact Process on a Finite Set. III: The Critical Case
Durrett, Richard ; Schonmann, Roberto H. ; Tanaka, Nelson I.
Ann. Probab., Tome 17 (1989) no. 4, p. 1303-1321 / Harvested from Project Euclid
We show that if $\sigma_N$ is the time that the contact process on $\{1, \ldots N\}$ first hits the empty set then for $\lambda = \lambda_c$, the critical value for the contact process on $\mathbb{Z}, \sigma_N/N \rightarrow \infty$ and $\sigma_N/N^4 \rightarrow 0$ in probability as $N \rightarrow \infty$. The keys to the proof are a new renormalized bond construction and lower bounds for the fluctuations of the right edge. As a consequence of the result we get bounds on some critical exponents. We also study the analogous problem for bond percolation in $\{1,\ldots N\} \times \mathbb{Z}$ and investigate the limit distribution of $\sigma_N/E\sigma_N$.
Publié le : 1989-10-14
Classification:  Contact process,  critical exponent,  correlation length,  renormalization,  60K35
@article{1176991156,
     author = {Durrett, Richard and Schonmann, Roberto H. and Tanaka, Nelson I.},
     title = {The Contact Process on a Finite Set. III: The Critical Case},
     journal = {Ann. Probab.},
     volume = {17},
     number = {4},
     year = {1989},
     pages = { 1303-1321},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176991156}
}
Durrett, Richard; Schonmann, Roberto H.; Tanaka, Nelson I. The Contact Process on a Finite Set. III: The Critical Case. Ann. Probab., Tome 17 (1989) no. 4, pp.  1303-1321. http://gdmltest.u-ga.fr/item/1176991156/