Maximal Inequalities for Multidimensionally Indexed Submartingale Arrays
Christofides, Tasos C. ; Serfling, Robert J.
Ann. Probab., Tome 18 (1990) no. 4, p. 630-641 / Harvested from Project Euclid
Some new maximal-type probability inequalities are developed for discrete-time multidimensionally indexed submartingales. In particular, the basic idea of Chow is abstracted and extended. This leads to a result which yields extended Kolmogorov inequalities and strong laws, extended Hajek-Renyi type inequalities competitive with Smythe and an extended Doob inequality which is counter-intuitive to a counterexample of Cairoli.
Publié le : 1990-04-14
Classification:  Multidimensionally indexed martingales,  maximal inequalities,  strong law of large numbers,  60G42,  60F15
@article{1176990849,
     author = {Christofides, Tasos C. and Serfling, Robert J.},
     title = {Maximal Inequalities for Multidimensionally Indexed Submartingale Arrays},
     journal = {Ann. Probab.},
     volume = {18},
     number = {4},
     year = {1990},
     pages = { 630-641},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176990849}
}
Christofides, Tasos C.; Serfling, Robert J. Maximal Inequalities for Multidimensionally Indexed Submartingale Arrays. Ann. Probab., Tome 18 (1990) no. 4, pp.  630-641. http://gdmltest.u-ga.fr/item/1176990849/