On the Average Number of Level Crossings of a Random Trigonometric Polynomial
Farahmand, Kambiz
Ann. Probab., Tome 18 (1990) no. 4, p. 1403-1409 / Harvested from Project Euclid
There are many known asymptotic estimates of the number of zeros of the polynomial $T(\theta) = g_1 \cos \theta + g_2 \cos 2\theta + \cdots + g_n \cos n \theta$ for $n \rightarrow \infty$, where $g_i (i = 1, 2,\ldots, n)$ is a sequence of independent normally distributed random variables with mathematical expectation 0 and variance 1. The present paper provides an estimate of the expected number of times that such a polynomial assumes the real value $K$. It is shown that the results for $K = 0$ are valid when $K = o(\sqrt{n})$.
Publié le : 1990-07-14
Classification:  60H,  42,  Number of real roots,  Kac-Rice formula,  random equation
@article{1176990751,
     author = {Farahmand, Kambiz},
     title = {On the Average Number of Level Crossings of a Random Trigonometric Polynomial},
     journal = {Ann. Probab.},
     volume = {18},
     number = {4},
     year = {1990},
     pages = { 1403-1409},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176990751}
}
Farahmand, Kambiz. On the Average Number of Level Crossings of a Random Trigonometric Polynomial. Ann. Probab., Tome 18 (1990) no. 4, pp.  1403-1409. http://gdmltest.u-ga.fr/item/1176990751/