Extreme Values and High Boundary Crossings of Locally Stationary Gaussian Processes
Husler, J.
Ann. Probab., Tome 18 (1990) no. 4, p. 1141-1158 / Harvested from Project Euclid
We consider the large values of a locally stationary Gaussian process which satisfies Berman's condition on the long range dependence. The paper presents some limit results on the exceedances of the process above a certain general smooth high boundary. This allows deriving the limiting distribution of the maximum up to time $T$, for example, in the case of a standardized process with a constant boundary or in the case of a nonstandardized process with a smooth trend.
Publié le : 1990-07-14
Classification:  Extreme values,  boundary crossings,  local stationarity,  Gaussian processes,  asymptotic distributions,  60F05,  60G15
@article{1176990739,
     author = {Husler, J.},
     title = {Extreme Values and High Boundary Crossings of Locally Stationary Gaussian Processes},
     journal = {Ann. Probab.},
     volume = {18},
     number = {4},
     year = {1990},
     pages = { 1141-1158},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176990739}
}
Husler, J. Extreme Values and High Boundary Crossings of Locally Stationary Gaussian Processes. Ann. Probab., Tome 18 (1990) no. 4, pp.  1141-1158. http://gdmltest.u-ga.fr/item/1176990739/