Random Walks and Percolation on Trees
Lyons, Russell
Ann. Probab., Tome 18 (1990) no. 4, p. 931-958 / Harvested from Project Euclid
There is a way to define an average number of branches per vertex for an arbitrary infinite locally finite tree. It equals the exponential of the Hausdorff dimension of the boundary in an appropriate metric. Its importance for probabilistic processes on a tree is shown in several ways, including random walk and percolation, where it provides points of phase transition.
Publié le : 1990-07-14
Classification:  Trees,  random walks,  percolation,  random networks,  Hausdorff dimension,  random fractals,  branching processes,  05C05,  60J15,  60K35,  60J80,  05C80,  60D05,  82A43
@article{1176990730,
     author = {Lyons, Russell},
     title = {Random Walks and Percolation on Trees},
     journal = {Ann. Probab.},
     volume = {18},
     number = {4},
     year = {1990},
     pages = { 931-958},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176990730}
}
Lyons, Russell. Random Walks and Percolation on Trees. Ann. Probab., Tome 18 (1990) no. 4, pp.  931-958. http://gdmltest.u-ga.fr/item/1176990730/