Estimates of the Largest Disc Covered by a Random Walk
Revesz, P.
Ann. Probab., Tome 18 (1990) no. 4, p. 1784-1789 / Harvested from Project Euclid
Let $R(n)$ be the largest integer for which the disc of radius $R(n)$ around the origin is covered by the first $n$ steps of a random walk. The main objective of the present paper is to obtain better estimates for the upper tail of the distribution of $R(n)$. For example, we show that there are constants $0 < \lambda_2 < \lambda_1 < \infty$ such that \begin{align*}\exp(-\lambda_1 z) &\leq \lim \inf_{n\rightarrow\infty} \mathbf{P}\big\{\frac{(\log R(n))^2}{\log n} > z\big\} \\ &\leq \lim \inf_{n\rightarrow\infty}\mathbf{P}\big\{\frac{(\log R(n))^2}{\log n} > z\big\} \leq \exp(-\lambda_2z).\end{align*}
Publié le : 1990-10-14
Classification:  Random walk,  covered disc,  local time,  limit distributions,  strong theorems,  60J15,  60F05
@article{1176990648,
     author = {Revesz, P.},
     title = {Estimates of the Largest Disc Covered by a Random Walk},
     journal = {Ann. Probab.},
     volume = {18},
     number = {4},
     year = {1990},
     pages = { 1784-1789},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176990648}
}
Revesz, P. Estimates of the Largest Disc Covered by a Random Walk. Ann. Probab., Tome 18 (1990) no. 4, pp.  1784-1789. http://gdmltest.u-ga.fr/item/1176990648/