A Stability Result for the Periodogram
Turkman, K. F. ; Walker, A. M.
Ann. Probab., Tome 18 (1990) no. 4, p. 1765-1783 / Harvested from Project Euclid
Let $\{X_t\}^\infty_{t=1}$ be a stationary Gaussian time series with zero mean, unit variance, absolutely summable autocorrelation function and at least once differentiable spectral density function which is strictly positive in $\lbrack 0, \pi \rbrack$. In this paper it is shown that, if $M_n$ denotes the maximum of the normalized periodogram of $\{X_1,\ldots, X_n\}$ over the interval $\lbrack 0, \pi \rbrack$, then, almost surely, \begin{equation*}\tag{1} \lim \inf_{n\rightarrow\infty} \lbrack M_n - 2 \log n + \log \log n \rbrack \geq 0\end{equation*} and \begin{equation*}\tag{2} \lim \sup_{n\rightarrow\infty} \lbrack M_n - 2 \log n - 2(\log n)^\delta \rbrack = -\infty\end{equation*} for any $\delta > 0$.
Publié le : 1990-10-14
Classification:  Periodogram,  trigonometric polynomials,  spectral density function,  60F15,  62F15
@article{1176990647,
     author = {Turkman, K. F. and Walker, A. M.},
     title = {A Stability Result for the Periodogram},
     journal = {Ann. Probab.},
     volume = {18},
     number = {4},
     year = {1990},
     pages = { 1765-1783},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176990647}
}
Turkman, K. F.; Walker, A. M. A Stability Result for the Periodogram. Ann. Probab., Tome 18 (1990) no. 4, pp.  1765-1783. http://gdmltest.u-ga.fr/item/1176990647/