Regularite De Fonctions Aleatoires Gaussiennes a Valeurs Vectorielles
Fernique, X.
Ann. Probab., Tome 18 (1990) no. 4, p. 1739-1745 / Harvested from Project Euclid
In this paper, we give a simple condition ensuring that a Gaussian random function $X$ on a metric space $T$ with values in a Lusin topological vector space has a modification with continuous paths. This result extends previous results where $X$ was supposed to be stationary or have stationary increments. As in the stationary case, proof is based on Talagrand's theorem about the majorizing measures which permit us, if $E$ is a separable Banach space, to bound the law of the maximum on $T$ of the norm of $X$ in $E$.
Publié le : 1990-10-14
Classification:  Gaussian random functions,  Gaussian random vectors,  Lusin space,  regularity of paths,  60G15,  60B11,  60G20,  28C15
@article{1176990644,
     author = {Fernique, X.},
     title = {Regularite De Fonctions Aleatoires Gaussiennes a Valeurs Vectorielles},
     journal = {Ann. Probab.},
     volume = {18},
     number = {4},
     year = {1990},
     pages = { 1739-1745},
     language = {fr},
     url = {http://dml.mathdoc.fr/item/1176990644}
}
Fernique, X. Regularite De Fonctions Aleatoires Gaussiennes a Valeurs Vectorielles. Ann. Probab., Tome 18 (1990) no. 4, pp.  1739-1745. http://gdmltest.u-ga.fr/item/1176990644/