Best Constants in Martingale Version of Rosenthal's Inequality
Hitczenko, Pawel
Ann. Probab., Tome 18 (1990) no. 4, p. 1656-1668 / Harvested from Project Euclid
The following generalization of Rosenthal's inequality was proved by Burkholder: $A^{-1}_p\{\|s(f)\|_p + \|d^\ast\|_p\} \leq \|f^\ast\|_p \leq B_p\{\|s(f)\|_p + \|d^\ast\|_p\},$ for all martingales $(f_n)$. It is known that $A_p$ grows like $\sqrt{p}$ as $p \rightarrow \infty$. In this paper we prove that the growth rate of $B_p$ as $p \rightarrow \infty$ is $p/\ln p$.
Publié le : 1990-10-14
Classification:  Martingale,  moment inequalities,  good $\lambda$ inequality,  60E15,  60G42
@article{1176990639,
     author = {Hitczenko, Pawel},
     title = {Best Constants in Martingale Version of Rosenthal's Inequality},
     journal = {Ann. Probab.},
     volume = {18},
     number = {4},
     year = {1990},
     pages = { 1656-1668},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176990639}
}
Hitczenko, Pawel. Best Constants in Martingale Version of Rosenthal's Inequality. Ann. Probab., Tome 18 (1990) no. 4, pp.  1656-1668. http://gdmltest.u-ga.fr/item/1176990639/