On Ordered Stopping Times of a Markov Process
Fitzsimmons, P. J.
Ann. Probab., Tome 18 (1990) no. 4, p. 1619-1622 / Harvested from Project Euclid
Let $X$ be a strong Markov process with potential kernel $U$. We show that if $(\nu_n)$ and $\mu$ are measures on the state space of $X$ such that $\nu_1 U \leq \nu_2 U \leq \cdots \leq \mu U$, then there is a decreasing sequence $(T_n)$ of randomized stopping times such that $\nu_n$ is the law of $X_{T_n}$ when the initial distribution of $X$ is $\mu$.
Publié le : 1990-10-14
Classification:  Skorokhod stopping,  balayage order,  right process,  randomized stopping time,  60J25,  60J45,  60G40
@article{1176990636,
     author = {Fitzsimmons, P. J.},
     title = {On Ordered Stopping Times of a Markov Process},
     journal = {Ann. Probab.},
     volume = {18},
     number = {4},
     year = {1990},
     pages = { 1619-1622},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176990636}
}
Fitzsimmons, P. J. On Ordered Stopping Times of a Markov Process. Ann. Probab., Tome 18 (1990) no. 4, pp.  1619-1622. http://gdmltest.u-ga.fr/item/1176990636/