Hypercontraction Methods in Moment Inequalities for Series of Independent Random Variables in Normed Spaces
Kwapien, Stanislaw ; Szulga, Jerzy
Ann. Probab., Tome 19 (1991) no. 4, p. 369-379 / Harvested from Project Euclid
We prove that if $(\theta_k)$ is a sequence of i.i.d. real random variables then, for $1 < q < p$, the linear combinations of $(\theta_k)$ have comparable $p$th and $q$th moments if and only if the joint distribution of $(\theta_k)$ is $(p, q)$-hypercontractive. We elaborate hypercontraction methods in a new proof of the inequality $\bigg(E\bigg\|\sum_i X_i\bigg\|^p\bigg)^{1/p} \leq C_p\bigg(E\big\|\sum_i X_i\bigg\| + \big(E\sup_i\|X_i\|^p\big)^{1/p}\bigg),$ where $(X_i)$ is a sequence of independent zero-mean random variables with values in a normed space, and $C_p \approx p/\ln p$.
Publié le : 1991-01-14
Classification:  Random series,  moment inequalities,  hypercontraction,  normed spaces,  60G57,  60E07,  60H05
@article{1176990550,
     author = {Kwapien, Stanislaw and Szulga, Jerzy},
     title = {Hypercontraction Methods in Moment Inequalities for Series of Independent Random Variables in Normed Spaces},
     journal = {Ann. Probab.},
     volume = {19},
     number = {4},
     year = {1991},
     pages = { 369-379},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176990550}
}
Kwapien, Stanislaw; Szulga, Jerzy. Hypercontraction Methods in Moment Inequalities for Series of Independent Random Variables in Normed Spaces. Ann. Probab., Tome 19 (1991) no. 4, pp.  369-379. http://gdmltest.u-ga.fr/item/1176990550/