$L^P$ Estimates on Iterated Stochastic Integrals
Carlen, Eric ; Kree, Paul
Ann. Probab., Tome 19 (1991) no. 4, p. 354-368 / Harvested from Project Euclid
For a continuous martingale $M$, let $\langle M, M\rangle$ denote the increasing process. Let $I_0, I_1,\ldots$ denote the iterated stochastic integrals of $M$. We prove the inequalities of Burkholder-Davis-Gundy type, $A_{p,n}\|\langle M, M \rangle^{1/2}_t\|^n_{np} \leq \|I_n(t)\|_p \leq B_{p,n}\|\langle M, M \rangle^{1/2}_t\|^n_{np}$, where $\ln A_{p,n} \sim \ln B_{p,n} \sim -(n/2)\ln n$ as $n \rightarrow \infty$. Our proof requires the sharp constant $b_p$ in Burkholder-Davis-Gundy inequalities $\|M\|_p \leq b_p\|\langle M, M\rangle^{1/2}\|_p$. In the Appendix we prove $\sup_{p\geq 1}(b_p/\sqrt p) = 2$. We apply our inequality to the study of the $L^p$ convergence of the Neuman series $\sum I_n(t)$ for exponential martingales.
Publié le : 1991-01-14
Classification:  $L^P$ estimates,  iterated stochastic integral,  $L^P$ convergence of Neumann's series,  exponential martingales,  Burkholder-Davis-Gundy inequalities,  60G44,  60H05
@article{1176990549,
     author = {Carlen, Eric and Kree, Paul},
     title = {$L^P$ Estimates on Iterated Stochastic Integrals},
     journal = {Ann. Probab.},
     volume = {19},
     number = {4},
     year = {1991},
     pages = { 354-368},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176990549}
}
Carlen, Eric; Kree, Paul. $L^P$ Estimates on Iterated Stochastic Integrals. Ann. Probab., Tome 19 (1991) no. 4, pp.  354-368. http://gdmltest.u-ga.fr/item/1176990549/