On the Linear Prediction of Multivariate $(2, p)$-Bounded Processes
Houdre, Christian
Ann. Probab., Tome 19 (1991) no. 4, p. 843-867 / Harvested from Project Euclid
We develop the linear least squares prediction theory for some classes of nonstationary processes having a Fourier spectral representation. We study time domain as well as spectral domain properties for these processes, such as a Wold decomposition and a decomposition for matrix bimeasures. We also obtain an autoregressive representation for the optimum predictor.
Publié le : 1991-04-14
Classification:  Linear prediction,  nonstationary processes,  Wiener and Kalman filtering,  60G12,  60G10,  62M10
@article{1176990454,
     author = {Houdre, Christian},
     title = {On the Linear Prediction of Multivariate $(2, p)$-Bounded Processes},
     journal = {Ann. Probab.},
     volume = {19},
     number = {4},
     year = {1991},
     pages = { 843-867},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176990454}
}
Houdre, Christian. On the Linear Prediction of Multivariate $(2, p)$-Bounded Processes. Ann. Probab., Tome 19 (1991) no. 4, pp.  843-867. http://gdmltest.u-ga.fr/item/1176990454/