On Iterated Logarithm Laws for Linear Arrays and Nonparametric Regression Estimators
Hall, Peter
Ann. Probab., Tome 19 (1991) no. 4, p. 740-757 / Harvested from Project Euclid
Laws of the iterated logarithm are derived for row sums of triangular arrays of independent random variables, in the context of nonparametric regression estimators. These laws provide exact strong convergence rates for kernel type nonparametric regression estimators. They apply to the important case where design points are conditioned upon, and permit the design to be multivariate. We impose minimal conditions on the error distribution; in fact, only finite variance is needed.
Publié le : 1991-04-14
Classification:  Fixed design,  law of the iterated logarithm,  nonparametric regression,  strong convergence rate,  triangular array,  60F15,  60G50,  62G05
@article{1176990449,
     author = {Hall, Peter},
     title = {On Iterated Logarithm Laws for Linear Arrays and Nonparametric Regression Estimators},
     journal = {Ann. Probab.},
     volume = {19},
     number = {4},
     year = {1991},
     pages = { 740-757},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176990449}
}
Hall, Peter. On Iterated Logarithm Laws for Linear Arrays and Nonparametric Regression Estimators. Ann. Probab., Tome 19 (1991) no. 4, pp.  740-757. http://gdmltest.u-ga.fr/item/1176990449/