The Ruin Problem for Finite Markov Chains
Hoglund, Thomas
Ann. Probab., Tome 19 (1991) no. 4, p. 1298-1310 / Harvested from Project Euclid
We derive an asymptotic approximation of the joint distribution $\operatorname{prob}(N(u) - n \in A, S_{N(u)} - u \in B)$ as $n$ and $u \rightarrow \infty$. Here $N(u) = \min\{n; S_n > u\}$ denotes the first passage time for a random walk of the form $S_n = \sum^n_{k = 1}U_k(\xi_{k - 1},\xi_k)$, where $\xi_0,\xi_1,\ldots$ is a finite Markov chain and where $\{U_k(i,j)\}^\infty_{k = 1}$ is a sequence of independent random variables. The approximation holds for all sets $B$ and a fairly large class of sets $A$.
Publié le : 1991-07-14
Classification:  Boundary crossing,  large deviations,  Markov chains,  60J10,  60J15
@article{1176990345,
     author = {Hoglund, Thomas},
     title = {The Ruin Problem for Finite Markov Chains},
     journal = {Ann. Probab.},
     volume = {19},
     number = {4},
     year = {1991},
     pages = { 1298-1310},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176990345}
}
Hoglund, Thomas. The Ruin Problem for Finite Markov Chains. Ann. Probab., Tome 19 (1991) no. 4, pp.  1298-1310. http://gdmltest.u-ga.fr/item/1176990345/