Optimal Stopping and Best Constants for Doob-like Inequalities I: The Case $p = 1$
Jacka, S. D.
Ann. Probab., Tome 19 (1991) no. 4, p. 1798-1821 / Harvested from Project Euclid
This paper establishes the best constant $c_q$ appearing in inequalities of the form $\mathbb{E}S_\infty \leq c_q\sup_{t\geq 0}\|M_t\|_q,$ where $M$ is an arbitrary nonnegative submartingale and $S_t = \sup_{s\leq t}M_s.$ The method of proof is via the Lagrangian for a version of the problem $\sup_\tau\mathbb{E}\{\lambda S_t - \lambda^qM^q_t\},$ where $M \equiv |B|, B$ a Brownian motion. More general inequalities of the form $\mathbb{E}S_\infty \leq C_\Phi\sup_{t\geq 0}\|M_t\|_\Phi$ and $\mathbb{E}S_\infty \leq C_\Phi\sup_{t\geq 0}\||M_t\||_\Phi$ (where $\|\cdot\|_\Phi$ and $\||\cdot\||_\Phi$ are, respectively, the Luxemburg norm and its dual, the Orlicz norm, associated with a Young function $\Phi$) are established under suitable conditions on $\Phi$. A simple proof of the John-Nirenberg inequality for martingales is given as an application.
Publié le : 1991-10-14
Classification:  Brownian motion,  martingale inequalities,  optimal stopping,  Lagrangian,  Luxemburg norm,  BMO,  convex closure,  greatest convex minorant,  60G07,  60G40,  60J65,  60G42,  42B25,  42B30
@article{1176990237,
     author = {Jacka, S. D.},
     title = {Optimal Stopping and Best Constants for Doob-like Inequalities I: The Case $p = 1$},
     journal = {Ann. Probab.},
     volume = {19},
     number = {4},
     year = {1991},
     pages = { 1798-1821},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176990237}
}
Jacka, S. D. Optimal Stopping and Best Constants for Doob-like Inequalities I: The Case $p = 1$. Ann. Probab., Tome 19 (1991) no. 4, pp.  1798-1821. http://gdmltest.u-ga.fr/item/1176990237/