Let $f$ be a real martingale and $s(f)$ its conditional square function. Then the following inequalities are sharp: $\|f\|_p \leq \sqrt{\frac{2}{p}}\|s(f)\|_p,\quad 0 < p \leq 2,$ $\sqrt{\frac{2}{p}}\|s(f)\|_p \leq \|f\|_p,\quad p \geq 2.$ The second inequality is still sharp if $f$ is replaced by the maximal function $f^\ast$. Let $S(f)$ denote the square function of $f$. Then the following inequalities are also sharp: $\|S(f)\|_p \leq \sqrt{\frac{2}{p}}\|s(f)\|_p,\quad 0 < p \leq 2,$ $\sqrt{\frac{2}{p}}\|s(f)\|_p \leq \|S(f)\|_p,\quad p \geq 2.$ These inequalities hold for Hilbert-space-valued martingales and are strict inequalities in all of the nontrivial cases.
@article{1176990229,
author = {Wang, Gang},
title = {Sharp Inequalities for the Conditional Square Function of a Martingale},
journal = {Ann. Probab.},
volume = {19},
number = {4},
year = {1991},
pages = { 1679-1688},
language = {en},
url = {http://dml.mathdoc.fr/item/1176990229}
}
Wang, Gang. Sharp Inequalities for the Conditional Square Function of a Martingale. Ann. Probab., Tome 19 (1991) no. 4, pp. 1679-1688. http://gdmltest.u-ga.fr/item/1176990229/