We apply an invariance principle due to De Masi, Ferrari, Goldstein and Wick to the edge process for critical reversible nearest-particle systems. Their result also gives an upper bound for the diffusion constant that we compute explicitly. A comparison between the movement of the edge, when the other particles are frozen, and a random walk allows us to find a lower bound for the diffusion constant. This shows that the right renormalization for the edge to converge to a nondegenerate Brownian motion is the usual one. Note that analogous results for nearest-particle systems are only known for the contact process in the supercritical case.