Loading [MathJax]/extensions/MathZoom.js
Random Walk in a Random Environment and First-Passage Percolation on Trees
Lyons, Russell ; Pemantle, Robin
Ann. Probab., Tome 20 (1992) no. 4, p. 125-136 / Harvested from Project Euclid
We show that the transience or recurrence of a random walk in certain random environments on an arbitrary infinite locally finite tree is determined by the branching number of the tree, which is a measure of the average number of branches per vertex. This generalizes and unifies previous work of the authors. It also shows that the point of phase transition for edge-reinforced random walk is likewise determined by the branching number of the tree. Finally, we show that the branching number determines the rate of first-passage percolation on trees, also known as the first-birth problem. Our techniques depend on quasi-Bernoulli percolation and large deviation results.
Publié le : 1992-01-14
Classification:  Trees,  random walk,  random environment,  first-passage percolation,  first birth,  random networks,  60J15,  60K35,  82A43
@article{1176989920,
     author = {Lyons, Russell and Pemantle, Robin},
     title = {Random Walk in a Random Environment and First-Passage Percolation on Trees},
     journal = {Ann. Probab.},
     volume = {20},
     number = {4},
     year = {1992},
     pages = { 125-136},
     language = {en},
     url = {http://dml.mathdoc.fr/item/1176989920}
}
Lyons, Russell; Pemantle, Robin. Random Walk in a Random Environment and First-Passage Percolation on Trees. Ann. Probab., Tome 20 (1992) no. 4, pp.  125-136. http://gdmltest.u-ga.fr/item/1176989920/